If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-2=0
a = 11; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·11·(-2)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*11}=\frac{0-2\sqrt{22}}{22} =-\frac{2\sqrt{22}}{22} =-\frac{\sqrt{22}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*11}=\frac{0+2\sqrt{22}}{22} =\frac{2\sqrt{22}}{22} =\frac{\sqrt{22}}{11} $
| (n*n)+n-48=0 | | 9(9−9x2)=9 | | 3.5y-12=1.5y-3 | | 4(x+9)=6(x+5 | | t/5+3=18 | | X^2-2x=66 | | x-(7/x)-6=0 | | -4(x-15)=0,5(22x-110) | | 12w+30=198 | | 15w+65=- | | 0=19x+84+x^2 | | 3(x+9)=7x+1 | | 2(6+4x)-2=3(2x+4) | | 35x=1 | | 3/4(y-10)=12 | | -4/5(10-15x)=4 | | 2x+18=26-4x | | 2x+5=6-33x | | 16-|4x-5|=6 | | 2/5y+6=-2 | | 1/5x+6=3/5+5 | | 9x-18=6x+4 | | 5r/8=14.3-2.8 | | 3(q=7)=27 | | 9^3x+1=121 | | 6(x-3)=4x+1 | | -x+-x+5+5=-x+-x+-x+17 | | 180=95(x−273.15)+32 | | 1/2x-1=3 | | (5x-2)(5x-2)/4x=0 | | x/4+1=−10 | | n÷2+5=3 |